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PREFACE

The Occupational Safety and Health Act of 1970 emphasizes the need 

for standards to protect the health and safety of workers exposed to an 
ever-increasing number of potential hazards at their workplace. The 
National Institute for Occupational Safety and Health has projected a 
formal system of research, with priorities determined on the basis of 
specified indices, to provide relevant data from which valid criteria for 
effective standards can be derived. Recommended standards for occupational 
exposure, which are the result of this work, are based on the health 
effects of exposure. The Secretary of Labor will weigh these 

recommendations along with other considerations such as feasibility and 
means of implementation in developing regulatory standards.

It is intended to present successive reports as research and 
epidemiologic studies are completed and sampling and analytical methods are 
developed. Criteria and standards will be reviewed periodically to ensure 

continuing protection of the worker.
I am pleased to acknowledge the contributions to this report on zinc 

oxide by members of my staff and the valuable and constructive comments by 

the Review Consultants on Zinc Oxide, by the ad hoc committees of the 
American Academy of Occupational Medicine and the American Academy of 

Industrial Hygiene, by Robert B. O'Connor, M.D., NIOSH consultant in 
occupational medicine, and by Bruce J. Held on respiratory protection. 
NIOSH recommendations for standards are not necessarily a consensus of all



the consultants and professional societies that reviewed this criteria 

document on zinc oxide. Lists of the NIOSH Review Committee members and of 
the Review Consultants appear on the following pages.

John F. Finklea, M.D. *
Director, National Institute for 
Occupational Safety and Health
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I. RECOMMENDATIONS FOR A ZINC OXIDE STANDARD

The National Institute for Occupational Safety and Health (NIOSH) 

recommends that worker exposure to zinc oxide (ZnO) fume or dust in the 
workplace be controlled by adherence to the following sections. The 
standard is designed to protect the health and safety of workers for up to 
a 10-hour workday, 40-hour workweek over a working lifetime; compliance 

with all the sections of the standard should therefore prevent adverse 
effects of zinc oxide fume or dust on the health and safety of workers. 
The standard is measurable by techniques that are valid, reproducible, and 

available to industry and government agencies. Sufficient technology 

exists to permit compliance with the recommended standard. The standard 

will be subject to review and revision as necessary.

"Exposure to zinc oxide" is defined as exposure above half the 
recommended time-weighted average environmental limit.

Section 1 - Environmental (Workplace Air)
(a) Concentration
Occupational exposure to zinc oxide shall be controlled so that 

workers are not exposed to zinc oxide at an environmental concentration 

greater than 5 mg ZnO/cu m determined as a time-weighted average (TWA) 

exposure for up to a 10-hour workday, 40-hour workweek, with a ceiling of 
15 mg ZnO/cu m as determined by a sampling time of 15 minutes.
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(b) Sampling and Analysis

Procedures for sampling and analysis of environmental samples shall 

be as provided in Appendices I and II, or by any equivalent method.

Section 2 - Medical
Medical surveillance shall be made available as specified below for 

all persons occupationally exposed to zinc oxide.

(a) Preplacement medical examinations shall include:
(1) Comprehensive or interim work history.
(2) Comprehensive or interim medical history.
(3) The examination shall give special emphasis to the

respiratory tract. Such tests as chest X-rays and pulmonary function
studies may be considered by the responsible physician.

(b) Appropriate emergency health care shall be provided for
workers with adverse effects from zinc oxide.

(c) Initial examinations for presently employed workers shall be
offered within 6 months of the promulgation of a standard incorporating 

these recommendations, and at subsequent intervals determined by the 
responsible physician.

(d) Medical records shall be maintained for persons employed for 
one or more years in work involving exposure to zinc oxide and shall 
include information on all required medical examinations arid all reported 
episodes of metal fume fever. Medical records with pertinent supporting 
documents shall be maintained at least 5 years after the individual's 

employment is terminated. Pertinent medical records shall be available to 

the medical representatives of the Secretary of Health, Education, and



Welfare, of the Secretary of Labor, of the employee or former employee, and 

of the employer.

Section 3 - Labeling (Posting)
(a) The following sign shall be posted in readily visible locations 

in any work area where there is the likelihood of occupational exposure to 
zinc oxide:

CAUTION
ZINC OXIDE AREA

Harmful If Inhaled
Use Only With Adequate Exhaust 

Ventilation or Approved Respiratory 
and Personal Protective Devices.

(b) The posting required under Section 3 (a) shall be printed in

English and in the predominant language of non-English-speaking workers, if 
any, unless they are otherwise trained and informed of the hazardous areas. 
All illiterate workers shall receive such training.

Section 4 - Personal Protective Equipment
(a) Protective clothing

It is recommended that employees wear coveralls or equivalent
during working hours.

(b) Respiratory Protection
(1) Engineering controls shall be used wherever possible to 

maintain zinc oxide concentrations below the prescribed limits.
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Compliance with the permissible exposure limit may not be achieved by the 

use of respirators except:

(A) During the time period necessary to install or

test the required engineering controls.

(B) For nonroutine operations such as a brief

exposure to concentrations in excess of the permissible exposure limit as a 
result of maintenance or repair activities.

(C) During emergencies when air concentrations of

zinc oxide may exceed the permissible limit.
(2) When a respirator is permitted by paragraph (b)(1) of 

this section, it shall be selected and used pursuant to the following 
requirements:

(A) For the purpose of determining the type of
respirator to be used, the employer shall measure, whenever possible, the 
atmospheric concentration of zinc oxide in the workplace initially and
thereafter whenever process, worksite, climate, or control changes occur 

which are likely to increase the zinc oxide concentrations. This 

requirement shall not apply when only atmosphere-supplying positive 
pressure respirators are to be used. The employer shall ensure that no 
worker is being exposed to zinc oxide in excess of the standard because of 

improper respirator selection, fit, use, or maintenance.

(B) A respiratory protection program meeting the 

requirements of 29 CFR 1910.134 and 30 CRF 11.2-1 shall be established and 
enforced by the. employer.

(C) The employer shall provide respirators in
accordance with Table 1-1 and shall ensure that the employee uses the
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(D) Respiratory protective devices described in 

Table 1-1 shall be those approved under the provisions of 30 CFR 11.
TABLE 1-1

REQUIREMENTS FOR RESPIRATOR USAGE AT CONCENTRATIONS 
ABOVE THE TWA OR CEILING LIMIT*

respirator provided.

Maximum Use Concentration 
(Multiples of TWA limit)

Respirator Type 
for Zinc Oxide

Less than or Single use (valveless type) dust
equal to 5x or fume filter.
Less than or (1) Air-purifying quarter or half
equal to lOx mask respirator with replaceable dust 

or fume filter or single use (with 
valve) dust or fume respirator.
(2) Type C demand type (negative 
pressure) supplied-air respirator, 
with half mask facepiece.

Less than or (1) Air-purifying full facepiece
equal to lOOx respirator with replaceable dust 

or fume filter.
(2) Type C demand type (negative 
pressure) supplied-air respirator, 
with full facepiece.

Less than or Powered air-purifying (positive
equal to 200x pressure) respirator with applicable 

replaceable dust or fume filter.
Greater than Type C continuous flow type
200x (positive pressure) supplied-air 

respirator.

* For abrasive blasting in metal cleaning use only Type CE positive 
pressure supplied-air respirator with hood or helmet.
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(E) Respirators specified for use in higher 

concentrations of zinc oxide may be used in atmospheres of lower 
concentrations.

(F) The employer shall ensure that respirators are 
adequately cleaned, and that employees are instructed on the use of 

respirators assigned to them, and how to test for leakage.

Section 5 - Informing Employees of Hazards from Zinc Oxide
At the beginning of employment in a zinc oxide area, workers shall 

be informed of the hazards, relevant symptoms of overexposure, and proper 
conditions and precautions for safe exposure to zinc oxide. Circumstances 
under which zinc oxide may be generated shall be particularly emphasized. 
The information shall be kept on file and readily accessible to the worker 
at all places of employment where zinc oxide may be encountered. 
Information shall be recorded as specified in Appendix III, "Material 
Safety Data Sheet," or on a similar form approved by the Occupational 
Safety and Health Administration, US Department of Labor.

Section 6 - Work Practices

(a) Where a local exhaust ventilation system is used, it shall be 
designed, maintained, and utilized to limit the amount of zinc oxide 
dispersed into the workplace. Air from such an exhaust ventilation system 
should not be recirculated into the workroom environment or discharged 

outside the plant unless adequately cleaned to meet applicable air 
pollution codes.



(b) Local exhaust ventilation, located as close as practicable to
the operation, shall be used whenever welding, cutting, or related high- 
temperature operations are performed in tanks or other enclosed locations.

(c) General Housekeeping
(1) Vacuuming shall be used wherever practicable and no dry 

sweeping or blowing shall be performed.
(2) Emphasis shall be placed upon prompt cleanup of dust,

periodic repair of equipment, and proper storage of materials.

Section 7 - Sanitation Practices
Sanitation requirements shall include the following and shall comply 

with 29 CFR 1910.141:

(a) Hand washing facilities with soap and clean towels.
(b) Locker for clothing.

Section 8 - Monitoring and Recordkeeping Requirements

Workroom areas shall not be considered to have zinc oxide exposure if 
environmental levels, as determined on the basis of an industrial hygiene 
survey or by the judgment of the compliance officer, do not exceed half of 
the recommended TWA limit. Records of these surveys, including the basis 

for concluding that air levels are at or below half of the TWA limit, shall 
be maintained until a new survey is conducted. Workroom areas where there 
is exposure to zinc oxide shall be monitored in accordance with the 
specifications contained in the following subsections:
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(a) Semiannual requirements: Employers shall monitor environ­

mental levels of zinc oxide at least every 6 months, except as otherwise 

indicated by the judgment of a professional industrial hygienist. Also, 

surveys shall be repeated when any change in operations, processes, 
worksite, climate, or control indicates a need for réévaluation or at the 
discretion of the compliance officer. Samples shall be collected in the 
breathing zone of workers in accordance with the numbers specified in Table 
1-2. Sampling shall take into consideration variations in exposure arising 
in welding, burning, or related operations because of work on materials 
having various types of coatings of zinc or zinc compounds. The minimum 
number of representative TWA determinations for an operation or process 
shall be based on the number of workers exposed as provided in Table 1-2 or 
as otherwise indicated by a professional industrial hygienist.

TABLE 1-2 

SAMPLING SCHEDULE

Number of Employees Exposed
Minimum Number of Employees 
Whose Individual Exposures 
Shall Be Determined

1-20 50% of the number 
of workers

21-100 10 samples plus 25% 
of the excess over 
20 workers

over 100 30 samples plus 5% of 
the excess over 100 
workers
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(b) If semiannual samples show the environmental concentration of 

zinc oxide to be in excess of the recommended limits, suitable controls 

shall be initiated to reduce the exposure level to, or below, the 

recommended standard. In such cases monitoring shall continue at 30-day 
intervals until 2 consecutive surveys indicate the recommended limits are 
no longer exceeded. Periodic review and evaluation of environmental and 

medical data shall be performed to determine the effectiveness of control 

measures.
(c) Records of all sampling and of medical examinations shall be 

maintained for at least 5 years after the individual's employment is 
terminated. Records shall indicate the type of respiratory protective 
devices, if any, in use at the time of sampling. Records shall be 

maintained so that they can be classified to the extent possible by the 
employee. Each employee shall be able to obtain information on his own 
environmental exposure.
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II. INTRODUCTION

This report presents the criteria and the recommended standard based 
thereon which were prepared to meet the need for preventing occupational
diseases arising from exposure to zinc oxide fume or dust. The criteria 
document fulfills the responsibility of the Secretary of Health, Education, 
and Welfare, under Section 20(a)(3) of the Occupational Safety and Health 
Act of 1970 to "...develop criteria dealing with toxic materials and 
harmful physical agents and substances which will describe...exposure

levels at which no employee will suffer impaired health or functional 

capacities or diminished life expectancy as a result of his work

experience."

The National Institute for Occupational Safety and Health (NIOSH), 

after a review of data and consultation with others, formalized a system 
for the development of criteria upon which standards can be established to 
protect the health of workers from exposure to hazardous chemical and

physical agents. It should be pointed out that any recommended criteria 
for a standard should enable management and labor to develop better 
engineering controls resulting in more healthful work practices and should 
not be used as a final goal.

These recommendations for a standard for zinc oxide fume or dust are 
part of a continuing series of criteria being developed by NIOSH. The 

proposed standard applies only to occupational exposures to zinc oxide as 

applicable under the Occupational Safety and Health Act of 1970.
Although zinc oxide is manufactured and utilized in substantial 

quantities, the occupational exposures of principal concern are those to

10



freshly formed zinc oxide fume produced by subjecting zinc or some of its 

compounds to high temperatures. Education of potentially exposed workers 
to be on the alert for unexpected sources is therefore important.
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III. BIOLOGIC EFFECTS OF EXPOSURE

Extent of Exposure

Occupational contact with zinc oxide may occur either through its use 
in the manufacture of some product or through its formation as a fume as a 
result of subjecting either zinc or alloys containing zinc to high 

temperatures. The principal use of zinc oxide is as a white pigment in 
rubber formulations where it is also a vulcanizing aid. In 1971, shipments 

of zinc oxide in the United States were approximately 227,000 tons, about 
55% of which was for use in rubber. [1] Next in consumption level to 
rubber formulation is the photocopying process, followed by the replacement 
of lead carbonate by zinc oxide as a white pigment in paints, chemicals, 
and ceramics. Zinc oxide is also used in lacquers and varnishes, as a 

filler for plastics, in cosmetics, pharmaceuticals, glass, matches, and in 

dentistry. [1-3]
Total zinc consumption in the United States in 1971 was about 1.7 

million tons, of which approximately 1.3 million tons were slab zinc. The 
zinc content of ore and concentrates used directly to make pigments and 

salts was about 125,000 tons. Galvanizing consumed 38% of the slab zinc,

with 12% going into brass products, 3% as zinc oxide, and 40% into dye

casting alloys. [1]
The principal health hazard of zinc oxide arises from inhalation of 

its fume which is encountered in brass foundries, galvanizing, smelting,
welding of galvanized metal or metal coated with zinc compounds, and other 
processes where zinc is exposed to temperatures exceeding its melting
point. The freshly formed fume is considered especially hazardous because
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of its small particle size, ranging between 0.01 and 0.4 pan. [3-6] Zinc 

oxide is a white or yellowish-white, amorphous, odorless powder. Its
physical characteristics are presented in Table X-l. Table X-2 lists 
potential occupational exposures to zinc and its compounds as presented by 
Gafafer. [7] Results of individual samples from welding operations are 
shown in Tables X-3, X-4, X-5, and X-6. NIOSH estimates that 50,000

individuals in the work force have potential exposure to zinc oxide.

Historical Reports

Metal fume fever, both the most common and the most important 
manifestation of occupational zinc oxide fume toxicity, is as old as the 
metallurgy of brass which began before the Christian era. [8] According to 
Meiklejohn, [9] the earliest recognition that metal fume fever, associated 
with the melting and casting of brass, was a result of the inhalation of
zinc oxide fume, was by Thackrah. [9] Thackrah also described
gastrointestinal and respiratory symptoms in brass founders.

Many further reports and clinical descriptions of metal fume fever 
were made during the remainder of the 19th century. In the opinion of 

Drinker, [8] these episodes may have been largely due to zinc oxide fume, a 
fact possibly not recognized by the authors of that time.

In 1910, Lehmann [10] reported from Germany the experiments upon 

himself and 3 others, all of whom subjected themselves to fumes from the 
combustion of chemically pure zinc. All subjects experienced what Lehmann 
described as metal fume fever. Analyses of 100-liter samples of the 

experimental chamber area air, filtered through cotton, showed the presence 
of 0.1-0.4 mg of ZnO/liter(100-400 mg ZnO/cu m). Lehmann postulated that
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zinc oxide might produce the characteristic symptoms of dryness and 

irritation of the throat with coughing and dyspnea, also pains in the

muscles and joints, and general malaise very similar to influenza. Fever 
then developed, typically associated with the sensation of chills. [8,11- 
14] These symptoms were thought to be induced by the destructive action 

upon the epithelial cells of the respiratory passages, followed by 
absorption of the products of this destruction which were pyrogenic in 
effect. He also described experiments in which he failed to produce
analogous effects in animals by intratracheal injection of zinc oxide 
powder.

Since 1910, metal fume fever, specifically zinc fume fever, and 
speculations about its pathogenesis, have received almost all the attention 
devoted to occupational zinc oxide toxicity in the literature.

Effects on Humans

(a) Theoretical Considerations

In considering the toxic effects of a metallic salt, it is necessary
to study the toxicology of the metal and its ion. Zinc, unlike its

neighbors in group II-B of the periodic table, cadmium and mercury, plays a 
vital metabolic role as a trace element in biological systems. [15-17]

The widespread distribution of zinc in the environment has been 
mentioned in most of the major reviews. [16-21] According to Schroeder and 
his associates [15], "Zinc is omnipresent in living organisms and ranks 
with the most abundant of the trace metals in man.”

Schroeder et al [15] listed and evaluated the findings of zinc in 
human tissue samples he and his colleagues [22] collected from 13 areas of

14



the world. Five-eighths of the total body pool of zinc was stored in 

striated muscle. The highest concentrations (4900-9200 jug/g) were observed 
in the prostate, liver, and kidneys. Noting that variations were great, 
they estimated a daily turnover of 12.6 mg of zinc for humans. Intake was 
estimated to be 12.0 mg from food, 0.5 mg from water, and 0.1 mg from air. 
Output was estimated [15] to be 10.6 mg in feces, 0.5 mg in urine, 0.5 mg 
in sweat, and 1.0 mg each in semen and menstrual blood. These figures are 
in the same range as those of Drinker et al, [23] which were 0.25-2 mg 
(average 0.89 mg) daily in urine, and 2.67-19.9 mg (average 9.8 mg) in 
feces daily. Foods considered by Schroeder et al [15] to be good sources 
of zinc included seafoods, meats, whole grains, dairy products, legumes, 
and nuts. Zinc, with cadmium, is present in a wide variety of foods in 

concentrations ranging from less than 1 Mg/g in egg white to over 1000 Mg/g 
in oysters. All drinking waters examined contained zinc. The authors 
concluded [15] that "Zinc compounds are relatively nontoxic to living 

organisms, especially mammals.”
Zinc deficiencies in villagers in the Middle East have been described 

by Prasad. [24] He hypothesized that these deficiencies might involve 
hypopituitarism or might have a direct effect on DNA synthesis, as severe 
growth retardation and sexual hypofunction were among the deficiencies 
noted. Addition of zinc supplement to the diet of affected males led to 
growth and development of gonads and of secondary sex characteristics.

Using extraction and absorption techniques, Vikbladh, [25] 

demonstrated zinc in 2 fractions of blood serum, one of which is firmly 

bound and the other more loosely bound to a serum protein. Lowered zinc 
levels in blood serum have been observed during the febrile stage of
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infectious diseases in humans. Also in patients with "leukemias, malignant 

tumours, hepatogenic icterus, chronic polyarthritis, and chronic 

arthritis." Low serum zinc values in cases of untreated pernicious anemia 

were increased to normal levels by liver therapy.
(b) Effects of Inhalation
There are many excellent clinical descriptions of zinc fume fever in 

the literature, for example those of Drinker [8] in 1922, Kehoe [11] in 

1948, Rohrs [12] in 1957, Fishburn and Zenz [13] in 1969,and Anseline [14] 
in 1972.

From 4-12 hours after exposure to freshly formed fumes of zinc oxide, 
the subject first begins to notice an unusual taste in the mouth. This may 

be described as a sweetish or "metallic" taste, or it may be some 
alteration of familiar tastes, including tobacco smoke, which then becomes 

undesirable. There are also dryness and irritation of the throat with 

coughing and dyspnea, feelings of weakness, fatigue, pains in the muscles 
and joints, and general malaise very similar to the prodromal syndrome of a 

severe coryza or influenza. Fever then develops, typically associated with 
the sensation of chills. [8,11-14] The body temperature is usually around 
102 F but may reach 104 F. There may be febrile shivering or rigors which 
may be malaria-like in intensity. Historical trade terms such as "metal 

fume fever," "brassfounders ague," "brass chills," "spelter shakes," 
"galvo," "zinc chills," "zinc ague," and "Monday-morning fever" 
[8,11,14,26] refer to this feature. The subject usually sweats profusely, 
during which process the body temperature begins to fall; occasionally, the 
chills and sweating may be associated with convulsions. Severe pain in the 

chest, aggravated by breathing, have been described. [13] Clinical and



symptomatic recovery is usually complete in 24-48 hours. [13] Blood taken 
during the acute phase of the illness has shown a polymorphonuclear

leukocytosis, with the total white cell count rarely going above 20,000 
cells/cu mm. The erythrocyte sedimentation rate does not seem to be
significantly raised. There may be transient increases in certain serum 
enzyme levels, especially in the lactic acid dehydrogenase. Fishburn and 
Zenz [13] found an elevation in isoenzyme Factor 3 but a normal total serum 

lactic dehydrogenase in a typical case of zinc fume fever. Anseline [14] 
noted an elevation of the pulmonary isoenzyme for lactic acid dehydrogenase 
in the serum of another case. During the acute phase, the chest X-ray was 
either normal or showed merely an increase in bronchiovascular markings. 
[12,14]

A remarkable feature of zinc fume fever is the rapid development of 

tolerance to which the term "tachyphylaxis" (literally "quick immunity") 
was given by McCord [26] in 1960. The author stressed that this "immunity" 

was both quickly gained and quickly lost. In practical terms, this
phenomenon means that a zinc or brass worker is more likely to experience
zinc fume fever on his first day back at work after a weekend break or a 
vacation than during subsequent consecutive days of exposure, hence the 
term "Monday-morning fever." [11] However, it is a short-lived tolerance 

and reexposure on consecutive days may lead to repeated attacks of zinc 
fume fever. [26] The mechanism of zinc fume fever, and of metal fume fever 
in general, is still the subject of speculation. [10,26,27] Other types of 
metal fume fever, clinically identical to zinc fume fever, have been 
attributed to the fumes of other metals including cadmium, [12] copper, 

[28] and magnesium oxide. [29] Experimental evidence for some of the
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hypothetical mechanisms is discussed later in this chapter under Animal 

Toxicity. It was suggested by McCord [26] in 1960, and supported by 
Stilinovic and Grubisic [30] in 1970, that metal fume fever was an 
immunologic disease.

Mogilevskaya [31] in 1959 reported inflammation of the upper 
respiratory tract (nasopharyngitis and laryngitis) in 13 of 19 workers 
employed in zinc powder factories. These changes developed after 2-3 years 
of work. The author suggested that zinc and zinc oxide powder caused the 
alterations in the upper respiratory tract, the bronchi, and the 

peribronchial tissues. It was concluded that persons with diseases of the
respiratory tract should be protected or excluded from exposures to zinc
powders. Workers involved with zinc or zinc oxide powders and dusts 
should, according to Mogilevskaya, be given periodic medical examinations 
with emphasis on the ear, nose, and throat, and X-ray examination should 
be included. Dzukaev and Kochetkova [32] also reported fibrous changes in 
the lungs of workers in a zinc oxide production plant. They noted 
deformation, strengthening, and thickening in the X-rays of the lower and 
middle areas of the lungs. Details were not given and the supporting 

animal experiments are questionable because the suspension injected 
intratracheally into the laboratory animals contained 11-15% lead oxide. 
The reports [31,32] suggest a potential danger from zinc oxide powder when

inhaled over prolonged periods of time.
Following the experimental exposures to pure zinc oxide fume of 

Lehmann [10] and 3 other subjects described under Historical Reports, 
Sturgis, Drinker, and their co-workers [5,6,29,33] in 1927 published a 
series of 4 reports on experimentally induced metal fume fever in humans.
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The first report by Sturgis et al [5] in 1927 concerned 2 male subjects 

aged 32 and 39. Both had previous exposures to unmeasured concentrations 

of zinc oxide fume, and both experienced metal fume fever on several 
occasions during the preceding 2 years. With this previous experience, the 

subjects inhaled the oxide for a length of time and in a manner which each 
knew would produce a typical reaction of only moderate severity. Both were 
exposed in the same exposure chamber to an average concentration of 600 
mg/cu m of high purity zinc oxide fume calculated as elemental zinc. One 
subject breathed for 5 minutes at 6 respirations/minute, then for 5 1/2 
minutes at 12 respirations/minute. The other breathed for 12 minutes at 15 

respirations/minute. It was calculated that the first subject retained 24 

mg of zinc and the second 37 mg of zinc during these exposures. Both 
developed metal fume fever, the maximum febrile reaction being reached in 
the first subject about 7 hours after exposure, in the second subject about 
4 hours after exposure. The body temperature of both subjects returned to 
normal within 12 hours. The white blood cell counts (WBC) of both 
individuals peaked (approximately 17,000/cu mm) at about the same time as 
the peak body temperature was attained. In both cases, the WBC count 
peaked again at a similar level almost exactly 24 hours after inhalation 
and remained high for the following 12 hours. In both subjects, the vital 
capacities, measured at 4-hour intervals, declined synchronously with the 
rise in body temperature and the initial rise in WBC count. The vital 

capacity of the first subject was decreased by as much as 18% of baseline 

and in the second subject there was a diminution of 53%, a seemingly 

drastic reduction. In both cases, the vital capacity had returned to 
baseline within 36 hours after exposure. Significant changes in blood
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pressure and chest X-rays were not found.

The second report in the series by Drinker et al [33] covered the 

same experimental subjects as previously. Estimations were made on the 
zinc content of the air at a brass foundry for about 5 hours. Subsequent 

analyses of samples showed that one of the subjects could have inhaled an 
average of 52 mg Zn/cu m air. That night the subject experienced symptoms 
of metal fume fever. The following day he worked for 3 hours in an 
environment containing an average of 330 mg/cu m of Zn and he experienced 
some of the prodromal symptoms of metal fume fever in the afternoon. On 
the third day he returned to the same foundry where he was presumably 
reexposed to similar concentrations of zinc oxide fume as on the previous 2 

days, but this time he experienced no untoward reactions. Experimental 
exposures were then repeated upon the first subject of the earlier report. 
On the first day he was exposed to zinc oxide at 430 mg Zn/cu m of air for 
8 minutes. He developed metal fume fever that night, his temperature 
peaking about 13 hours after exposure. Twenty-four hours after the first 
exposure, he was reexposed at 610 mg Zn/cu m and experienced a much milder 
attack of metal fume fever, peaking at about 12 hours after exposure. The 

WBC was also followed at 4-hour intervals, peaking at about 15,000/cu mm on 
the first day about 4 hours before the fever peak. On the second day the 
WBC was much higher (19,000/cu mm), falling to 11,000/cu mm about 4 hours 
after exposure and rising again to 17,000/cu mm synchronously with the 
second fever peak. Both the body temperature and the WBC count then 
gradually declined over the following 48 hours. It was concluded that 

acquired resistance to the effects of zinc oxide fume inhalation had 

occurred, thereby attenuating or preventing the fever altogether, despite
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reexposure on consecutive days.

In their third experimental report, Drinker et al [29] described in 

passing an experimental exposure of 2 subjects to a well dispersed cloud 
of very fine zinc oxide powder, the particles of which were of the order of 
0.15 /wn in size. They observed that such a cloud of very fine zinc oxide 
dust had approximately the same capacity for causing metal fume fever as 
the freshly formed fume. Most of this report, however, was devoted to an 
experimental demonstration that magnesium oxide fume in concentrations
ranging from about 4-6 mg/cu m caused a metal fume fever that was
clinically indistinguishable from that produced by zinc oxide fume.

In the fourth experimental report in this series, Drinker et al [6] 
estimated the threshold dose of inhaled zinc oxide, in the form of fume, 

necessary to induce metal fume fever. They postulated that the occurrence 
of metal fume fever was determined by the depth of penetration of the oxide 
particles into the lung, the alveoli being the site of action, with 

alveolar penetration being increased by slower and deeper inspiration. 
This postulate was based upon the observation that of 8 subjects inhaling 
the same concentration of zinc oxide fume for about the same period of
time, 5 men who were breathing very deeply at 6 respirations/minute 
developed typical metal fume fever. Two of the women who were breathing at 
a rate and depth described as normal developed only minimal symptoms 
although they had actually inhaled as much oxide as the men. The remaining 
female subject with low minute volume did not develop any symptoms. The 
authors explained the difference in symptoms by the degree in alveolar 

penetration by the zinc oxide particles as influenced by the manner of 
breathing, ie, slow maximal-depth breathing leading to greater particle
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retention than that resulting from breathing at a normal rate and depth for 

the same minute volume. It was determined experimentally [6] by measuring 
the zinc oxide content of both the inhaled and the exhaled air and assuming 
that approximately 1/2 of the inhaled zinc oxide fume was retained in the 
respiratory tract of the subjects.

A series of 27 inhalation experiments were then conducted [6] at 
different concentrations of freshly generated zinc oxide fume at varying 
durations of exposure and different respiration rates and minute volumes. 
One of the men was subjected to 11 experiments, varying the above 

experimental conditions, another to 5 experiments, 2 males and 1 female to 
2 experiments each, and the remaining 3 males and 2 females to 1 experiment 
each. From the results obtained from 7 males and 3 females, a dose- 
response relationship was determined by plotting the calculated retained 

dose against rise in body temperature. A concentration of 15 mg/cu m of 
zinc oxide was suggested as the threshold limit for an 8-hour workday. 
However, this figure does not seem to have been derived from the extensive 
dose-response calculations described. It appears that an average 
concentration of 14 mg/cu m, below which fever was not observed, was 
derived from the report of Batchelor et al, [34] and that the selection of 

15 mg/cu m [6] as a TLV was based upon Batchelor's work with zinc oxide 
powder, not zinc oxide fume. Drinker et al [6] and Batchelor et al [34] 
used the concentration of 15 mg/cu m as the threshold limit because they 
found that the men exposed for 8 hours to zinc oxide powder of that 
concentration in Batchelor's study did not ordinarily acquire fever.
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(c) Gastrointestinal Effects
There are several reports in the literature suggesting that prolonged 

occupational exposure to zinc oxide fume may be associated with 
gastrointestinal disturbances. [35-37] In an insufficiently documented 
paper on occupational disease of zinc workers in the galvanizing trade, 
McCord et al [35] in 1926 described histories obtained from workers 
employed in galvanizing processes for 5-22 years which were suggestive of 
gastric or duodenal ulcers or hyperchlorhydria. No physical examinations 
of the workers were performed. The attribution of exposure to zinc is 

questionable because exposure was diverse and included hydrogen sulfide, 
arsine, arsenic, mineral acids, ammonia, ammonium chloride, lead, antimony, 
cadmium, aluminum, as well as zinc, zinc oxide, and zinc salts. [35]

In 1934, Kapp [36] reported 2 cases of gastrointestinal disturbances 
in zinc workers. One was a 29-year-old mechanic with a history of metal 

fume fever who spent a few hours 3-4 times each month cutting apart 
galvanized objects with an oxygen torch. The other was a galvanizer. 
After one prolonged exposure ("a few hours") to zinc oxide fume, the 
mechanic did not recover promptly from the metal fume fever but complained 
the following day of pressure in the stomach region, nausea, and weakness. 

Aspirated gastric fluid contained leukocytes. The symptoms responded to a 
medical ulcer regimen. The galvanizer was exposed for several hours each 
day to fumes from an oven in which zinc was melted and ammonium chloride 
was heated. Symptoms of coughing, vomiting, and cramp-like pains in the 
upper abdomen developed gradually within 6 months. The temporary symptoms 

of the 2 workers gave the impression of zinc-fume fever and suggested 
possible gastrointestinal effects from repeated or prolonged exposure to
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zinc fumes.
In 1936, Chrometzka [37] reported observations on 58 electric

welders, 18 of whom were seen during episodes of metal fume fever, and the 
remaining 40 after the symptoms had disappeared. The welding operations 
were performed on sheets of galvanized iron. Many of the workers

complained of pressure or distention of the stomach, loss of appetite, and, 
in the more advanced cases, cramp-like pains in the upper abdomen. In 12 
of the 58 cases the stomach distress was the most pronounced complaint 
after the fever period. Gastritis was diagnosed in only 1 case, but 12 

others had signs of gastric irritation which included acidity, high mucous 

production, disposition to bleeding, mucous membrane desquamation, and 

leukocyte infiltration. Ulcers could not be demonstrated in any of the 
patients, not even with recurrence of poisoning. Four of the patients 
complained of periodic diarrhea.

In 1969, Hamdi [38] reported a study of 12 Egyptian brass foundry
workers who were heavily exposed to zinc oxide fumes for 4-21 years. No

environmental data were given. The zinc content of aspirated gastric juice 
was determined from 8 of the exposed workers and from 7 unexposed controls. 
There was a statistically significant increase of zinc concentration in 
their basal fasting gastric juice, in red blood cells, and in whole blood 
compared to the controls. It was suggested that the increase in zinc 
concentration in the gastric secretion might have accounted, in part, for 
gastric complaints present in 10 of 12 workers. The author suggested that 

other factors such as other environmental contaminants could have been 
responsible for the pains reported.
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McCord et al [35] in 1926, and Du Bray [39] in 1937 have postulated
chronic systemic toxic effects from the absorption of zinc following

exposure to zinc oxide fume and other zinc compounds but Drinker and

Fairhall [40] in 1933, and Hamilton and Hardy [41] in 1949, in review 
articles on the toxicology of zinc, have expressed doubts as to the 
existence of chronic systemic effects. To quote Hamilton and Hardy, [41] 
"On the whole the great weight of evidence is against the existence of 
chronic industrial zinc poisoning, and the ill health of workers in zinc 
when it exists should be traced to other sources."

In 1973, Guja [42] reported a prevalence of what was described as a 
clinically latent dysfunction of the liver in 60% of workers (15 out of

25) exposed to 50 mg ZnO/cu m, measured as zinc. Of the 15 men with
evidence of liver dysfunction, (abnormal levels of alanine aminotransferase 
and cholinesterase were analysed), 3 had radiological evidence of a peptic

ulcer. The workers also complained of debility, abdominal pain, acid
rebound, heartburn, and loss of weight. The urinary uropepsin levels were 

significantly higher in the 25 workers exposed to zinc oxide than in 25

unexposed controls. In the opinion of Guja, a raised urinary uropepsin 
level may be indicative of toxic damage to the gastrointestinal tract.

(d) Effects on the Skin

Zinc oxide is a constituent of many topical dermatological 
preparations [43] and has demonstrated a low potential for skin irritation. 
In 1921 Turner [44] reported that 14 out of 17 men employed in the
manufacture of zinc oxide either had or had experienced in the past an 
occupational dermatitis known in the trade as "oxide pox," which was 
referred to as a dermatoconiosis due to zinc oxide powder. The lesions
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were described as small red projecting papules, 2-3 mm in diameter, hard 

and shotlike on palpation, with a white central plug. There was an areola 
of inflammation at the base of the papule. On the 2nd or 3rd day of the 
eruption, the central portion of the papule began to soften and develop 
into a pustule causing intense itching. In 10 of the cases, the skin of 
the affected parts was dry, and in 4 cases it was moist and eczematous. 
The eruption usually persisted for a week or 10 days, gradually subsiding 
and drying up. In 13 of the cases, the pubic region, scrotum, and inner 
surfaces of the thighs were affected. In 4 cases the axilla and inner 

surfaces of the arms were also involved. Secondary infection, mostly by 
Staphylococcus aureus, was thought to play a significant role in the 

pathogenesis of the skin lesions. Blood agar cultures of material from the 

lesions were 90% positive for Staphylococcus. It was concluded that zinc 

oxide had combined with debris and bacteria to block sebaceous glands, 
resulting in irritation and eventually infection. The workers in the 

factory reported that the lesions did not occur if they took daily baths. 
It is evident that the skin disorders in zinc oxide workers occurred mainly 

because of lack of personal hygiene.

Epidemiologic Studies
In 1926, Turner and Thompson [45] published an extensive survey of 

the health hazards of brass foundries with some epidemiologic findings but 
no quantitative environmental data were presented. Qualitative sampling 
established the presence of zinc as well as iron, cadmium, manganese, 
antimony, and traces of lead, arsenic, and tin in the airborne dust. Of 

the 102 brass foundry workers interviewed, 26% had attacks of "brass
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foundrymen's ague" on the average of once a week, 13% once a month, 17% 

once a year, 11% twice a week, 14% twice a month, 6% twice a year, 2% three 
times a month, 1% three times a year, and 10% about four times a year. 
Eighty-eight percent of the men asserted that the attacks occurred only 
during the winter months (when natural ventilation was inadequate) and 12% 
said that they were affected without regard to the seasons. All said that 
during inclement weather they were almost certain to have an attack.

Another observation in this report was that a syndrome, similar to "brass

foundrymen's ague," was seen in men engaged in the manufacture of zinc 
oxide powder. Four out of 8 men engaged in the bagging of the freshly 

formed and still warm oxide dust gave positive histories of "oxide chills"
and 7 out of 9 men in the packing room had similar symptoms. No actual
cases of the syndrome were observed by the investigator, but several case 

histories were obtained by questioning the employees. A definite 
similarity was noted in the symptoms and severity of attacks found in brass 
foundrymen and the oxide chills reported by the men engaged in the
manufacture of zinc oxide powder. The symptoms common to both brass 
foundrymen and oxide workers consisted of irritation and dryness of the
nose and throat, frequent headaches, and occasional digestive disturbances 
including constipation. It was considered by the authors [45] that the
entire sequence of symptoms in all stages was so constant in both
situations that the basic causative factor must have been the same.

In 1926, Batchelor et al [34] published a report with epidemiologic 
features and minimal environmental data oil the effect of metallic zinc, 

zinc oxide, and zinc sulfide on the health of workers. The industrial 

processes included the smelting of zinc ore for spelter (ingots) and for
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zinc oxide, and the manufacture of zinc oxide, of paint pigment (lithopone,

30% zinc sulfide and 70% barium sulfate), and of zinc dust. Out of a

total of 1,620 men employed in the plant, 24 were singled out for special
study. These 24 men were defined as having been exposed to zinc metal or

zinc oxide, measured as zinc, ranging from 0.03 to 3.7 mg/cu ft (1-131
mg/cu m) for periods ranging from 2 to 35 1/2 years. They were described
as being "...on the whole a vigorous, healthy lot of men, giving no
histories of significant past illnesses and showing only such general
physical conditions as one would expect to find in any similar group of men 
of the same ages, of the same social status, and doing approximately the 
same amount of physical work in an atmosphere with a moderate amount of 

dust, but with no exposure to zinc...." The 24-hour urinary and fecal zinc 
levels in the zinc workmen differed from 24-hour urine and fecal zinc 
excretion values for normal (unexposed) subjects on an ordinary mixed diet. 

The authors' summary conclusion on these measurements was: "...zinc
workers absorb and excrete zinc in amounts considerably over the normal,

and they maintain constantly a blood zinc content slightly higher than
normal...abnormal amounts of zinc may enter and leave the body for years 
without causing symptoms or evidence, which can be detected clinically or 
by laboratory examination, significant of gastrointestinal, kidney or other 
damage...." [34] Data on excretion levels have been cited in the section 
on Effects on Humans of this document.

In 1944, Hammond [46] reported on the incidence of metal fume fever
in the crushed stone industry. In this industry, zinc containing from 1.6 
to 2.2% lead was used to bind and fill voids about the various crushers. 
When molten zinc was poured in the repairing and relining of the crushers,
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environmental zinc levels ranged from 8 to 12 mg/cu m, with a mean of 10 

mg/cu m from 4 measurements. No metal fume fever was observed or recorded 
during these operations. However, during oxyacetylene torch cutting 

procedures in the removal of old linings, much higher environmental levels 
for zinc oxide (as zinc) were measured, ranging from 320 to 545 mg Zn/cu m, 
with an average of 465 mg Zn/cu m from 5 samplings. Moreover, mean 
environmental levels of 12.4 mg/cu m of manganese and 1.6 mg/cu m of lead 
were also noted. The cutters were usually inside the crushers for 1-3 

hours without ventilation. It was reported that at one time or another the 

workers engaged in cutting or burning out of old liners under these 
conditions experienced metal fume fever.

Animal Toxicity
(a) Inhalation
In 1910, Lehmann [10] reported the results of experiments conducted 

in 1906 in which rabbits were exposed to zinc oxide by inhalation or by 
intratracheal injection. Lehmann was unable to produce metal fume fever in 
the animals by either route, inhalation or intratracheal injection.

In 1926, Turner and Thompson [45] reported studies on guinea pigs to 
test Lehmann’s hypothesis. Monkeys were rejected as being too difficult to 

handle. An exposure cage was designed to produce a condition similar to 

that encountered in brass foundry practice, with the additional advantage 

that the intensity and duration of exposure were reasonably controlled. 

Temperature, pulse, and respiration rate of the guinea pigs were observed 
prior to a 1-hour exposure at levels of zinc oxide ranging from 30 to 72 

mg/cu ft (1060.0-2543.0 mg/cu m) and again for 46 hours after exposure.
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They exhibited "air hunger," with labored and convulsive breathing for 
about 4 hours after removal from the exposure cages. Their temperatures 

were subnormal, being most depressed 3-4 hours after exposure. From 8 to 9 
hours after exposure, the temperatures were above normal, reaching a peak 
at 16 hours and returning to normal after 24 hours. When the animals were 
removed from the exposure cage, their respiration was slow and labored, but 

increased to a rate above normal for about 42 hours. Microscopic studies 
of lung tissue from exposed animals showed "infiltration of endothelial 

cells and polymorphonuclear leukocytes," which were described as being 

similar to that observed in bronchopneumonia.
Turner and Thompson [45] exposed 6 healthy guinea pigs at 29 mg/cu ft 

(1024 mg/cu m) of zinc oxide fumes for 1 hour daily for 3 days, followed by 
2 days of no exposure, then 6 additional days of 1-hour daily exposure. 

The animals showed "unmistakable evidence of an accumulative reaction" and 
required 3-6 days to recover from the effects, which included respiratory 
irritation, irregular heart action, and weight loss. In further 
experiments, animals exposed continuously at 70.9 mg/cu ft (2503 mg/cu m) 
of zinc oxide fume died within 2-5 hours of the start of the exposure. 
Both the lung tissue and the stomach tissue contained an average of 48 mg 
ZnO/animal suggesting that as much zinc oxide had been ingested as had been 
inhaled.

Drinker et al [47] reported in 1925 that zinc oxide was more 
effectively introduced into the lungs of experimental animals when 

administered with 10% carbon dioxide.

In 1928, Drinker and Drinker [48] reported results of experiments in 
which cats, rats, and rabbits were exposed for 15 minutes-3 1/4 hours at
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levels of zinc oxide fume ranging between 110 and 600 mg/cu m. The animals 

showed prolonged temperature depression but no subsequent rise above 

normal. In addition a delayed but definite increase in polymorphonuclear 
leukocytes was found. This contrasted with the earlier work of Turner and 
Thompson. [45] Chemical analyses using an unspecified method of Fairhall's 
[49] (either gravimetric, turbidimetric, or colorimetric) showed that the 
quantity of inhaled zinc did not vary directly with the length of exposure, 
but that most of the zinc accumulated during the first 15-45 minutes of 

exposure. [48] Cats inhaled proportionately more zinc than did rats. Zinc 
was removed rapidly from the lungs of cats and rats, returning to normal 

levels within 4 days after exposure. Zinc concentrations increased in the 
liver, gall bladder, bile, kidney, and pancreas. It was concluded [48] that 
the "characteristic reaction of animals to the inhalation of freshly formed 
metal fume products" was "a fall rather than a rise in temperature...." 

This statement was partially based on experiments with magnesium oxide in 

which similar results were obtained.

In 1928, Schmidt-Kehl [50] reported experiments in which rabbits were 
exposed to freshly formed zinc oxide fume. Serum extracts were prepared
from the bronchial and tracheal mucous membranes of rabbits which had 

inhaled zinc oxide fume. No temperature changes resulted when an extract 

was injected into the ear vein of an unexposed rabbit. Another experiment 
was performed using rabbit serum which had been sprayed into an atmosphere 
of zinc oxide fume. The serum (20-25 cc) was injected into the ear vein 
and the maximum temperature increase as compared with the controls was 
present 2-12 hours after the injection and ranged between 0.5 and 1.6 
degrees F above normal. The author [50] concluded that either a fever-
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inducing zinc and protein combination had formed, or that proteins of the 

respiratory tract were altered by zinc oxide and became pyrogenic.
In 1960, Pernis et al [51] criticized existing hypotheses regarding 

the mechanism of zinc metal fume fever and suggested an alternative

formation of endogenous pyrogens. Rabbits exposed first to acetic acid and 
then to zinc oxide fumes were tested for cross-tolerance between metal 
fumes and endotoxins. Tolerance to endotoxin did not extend to the
pyrogenic effect of zinc oxide fumes. They [51] concluded that these 

results contradicted the suggestion of Kuh et al [27] that metal fume fever 
was due to endotoxins from bacteria present in the respiratory tract. 
Pernis et al [51] drew attention to the infiltration of polymorphonuclear 
leukocytes noted in the lungs of guinea pigs by Turner and Thompson [45] 
and in cats by Drinker and Drinker [48] in 1928 and noted that conditions 
existed in the lungs of the experimental animals which permitted contact 

between leukocytes and zinc oxide particles, perhaps resulting in the 
release of endogenous pyrogen, thereby causing metal fume fever.

Mogilevskaya [31] in 1959 reported the intratracheal administration 
to rats of a 1-ml suspension containing 50 mg of zinc oxide powder in

sterile physiological solution. All animals survived and no untoward
effects were noted. Some of the rats were killed 8 months after the 
administration of the powder and others after 12 months. Microscopic 

changes observed in the lungs included hyperplasia and sclerosis of 
lymphatic follicles, deformations of the bronchi, and occasional 
peribronchial pneumonia. The changes observed were distinct from those 
associated with other types of metal dust. Specifically, there was no 
observation of a nodular process, of diffused sclerosis, or of acute toxic
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action. Pathological changes due to zinc dust were also observed in the 

upper respiratory tracts of the animals. [31]
Dzukaev and Kochetkova [32] in 1970 administered zinc oxide in sodium 

chloride solution intratracheally to 38 rabbits at a dose of about 40-80 
mg/kg of body weight. Changes were observed in the lungs of the animals, 

but the zinc solution contained as much as 15% lead, which raises a 
question concerning their conclusion that the observed changes were due to 
the zinc oxide.

A review of the literature by Stilinovic and Grubisic [30] in 1970 
led these authors to the conclusion that the mechanism of zinc fever onset 
was still one of speculation.

(b) Ingestion

Turner and Thompson [45] fed guinea pigs daily doses of a zinc oxide 

suspension in pure olive oil. The total dose over a 12- to 15-day period 

varied from 600 mg to 80 g/animal. Eight of 16 animals died between the 

2nd and the 11th day after ingestion of the mixture. Pulse rates were 
increased and respiratory rates in some animals were slower than normal. 
In sick animals respiration was faster than normal and temperatures lower 

than normal. At necropsy, animals' lungs were found to be congested. 
Fatty infiltration and parenchymatous degeneration were observed in the 
livers and kidneys. Control animals fed olive oil alone or zinc oxide in 
chopped carrots did not exhibit these changes. The authors concluded that 
zinc oxide, in itself, was probably innocuous when ingested, and that the 
fatalities resulting from the ingestion of the zinc oxide-olive oil mixture 
were due to either mechanical disturbances to the digestive system or to a 
toxic compound formed from the combination of the 2 substances.
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In 1927, Drinker et al [52] conducted long-term feeding experiments 

with cats and dogs to determine the effects of ingested zinc oxide. The 
animals received zinc oxide daily in the form of dry powder mixed with the 

food. The doses were administered daily for 35-53 weeks, ranged from 175 
mg to 1 g for the cats and 500 mg to 1 g for the dogs. The authors found 
no "significant clinical symptom nor obtained any significant laboratory 
evidence of damage" in the animals. Zinc was excreted mainly in feces. 
The same authors [52] reported another study in which cats and dogs were 
fed zinc oxide in food. Three cats receiving high doses showed a weight 
loss and loss of appetite, which the authors attributed to the disagreeably 

sweetish taste of the oxide-containing food. Zinc concentrations did not 

increase in fat, brain, spinal cord, heart, muscle, spleen, thyroid gland, 

or blood. Zinc increased in the liver, the gall bladder, the 

gastrointestinal tract, and the kidneys. Fibrous changes were observed in 
the pancreas of 3 cats given high doses. There was no other clinical or 
laboratory evidence of damage.

Sadasivan [53] fed rats supplemental pure zinc oxide at levels of 0.5 
and 1.0%, both with a stock diet and with a high-fat, low-protein diet. He 
observed reduction in the weight and fat content of the rat livers. 
Greater reduction with rats on the high fat diet suggested lipotropic 
activity of the zinc. At the 1% level, zinc oxide caused a lowered food 
intake. There was evidence that bone development and mineralization were 
adversely affected by zinc. This was evident by reduced dry weight and ash 
content of the bones.

Further experiments by Sadasivan [54] showed that urinary and fecal 
nitrogen excretion were increased in rats given zinc oxide supplements.
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Urinary excretion of phosphorus and sulfur decreased, but fecal excretion 

of phosphorus and sulfur increased. Urinary excretions of uric acid and 

creatinine increased with the zinc-supplemented diet.
Grant-Frost and Underwood [55] conducted studies on the interaction 

between dietary zinc oxide supplements and copper in rats. Rats receiving 

0.5% zinc as zinc oxide showed markedly reduced growth, food consumption, 
hemoglobin levels, copper retention, and body fat. These factorially 
designed experiments suggested to the authors that the effect of zinc on 
growth was due to reduced food consumption. Zinc appeared to reduce the 
copper concentrations in blood and tissues and may have antagonized 
absorbed copper at the cellular level, according to the authors, [55] who 
also concluded that the anemia was caused by a zinc-induced copper 
deficiency.

Witham [56] fed rats a basal diet with 0.4% zinc as zinc oxide and 
fed controls the basal diet alone. Assays of the homogenized livers from 
animals killed at 6 weeks showed reduction in the cytochrome oxidase 

activity in treated animals. The author presented evidence to support the 
view that this is due to zinc-induced copper deficiency.

(c) Injection

To further test the hypothesis of Lehmann [10] that metal fume fever 
might have resulted from absorbed lung proteins, Turner and Thompson [45] 
injected lung extracts from healthy animals, with and without zinc oxide, 

and extracts of lung from animals exposed to zinc oxide into- healthy 
unexposed animals. The temperatures and pulses of animals given lung 
extract from healthy unexposed animals were affected in much the same way 
as temperatures and pulses of animals exposed to zinc oxide fume had been.
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Addition of zinc oxide to the lung extract and use of extract from lungs of 

animals exposed to zinc oxide did not evoke additional effects.

Correlation of Exposure and Effect
The most commonly described and best documented effect of exposure to 

freshly formed zinc oxide fume in man is the syndrome of metal fume fever.
The first measured exposure to zinc oxide fume recorded is that 

reported by Lehmann in 1910. [10] Lehmann subjected himself and 3
colleagues to an experimental atmosphere containing from 100 to 400 mg 
ZnO/cu m of air, and all 4 subjects developed metal fume fever.

Batchelor et al [34] studied the maximum and minimum airborne zinc 

oxide dust levels in the workplaces of 24 men, out of a total work force of 
1,620. The 3 most heavily exposed men were reported never to have had 

"zinc chills" because 2 of them in fact were exposed to metallic zinc dust 
in the 6.2-130 mg/cu m range and the 3rd was exposed (16.6-58 mg/cu m as 
zinc) to highly aggregated "old" zinc oxide, of presumably large particle 
size. Nine of the 24 men observed were stated to have had the "shakes" 
within the first few days of their exposure to the suspended oxide. Three 
of the 9 experienced a recurrence of "shakes" once or twice after the first 

week or two of employment. Only 1 man in the series remained away from 

work because of metal fume fever.
The report by Hammond [46] on the incidence of metal fume fever

during the overhaul of stone crushers involving the use of zinc and zinc
alloys as a binder and filler established 2 basic ranges of zinc oxide fume

exposure. At airborne levels of 8-12 mg/cu m of zinc oxide no cases of
zinc fume fever were recorded. At airborne levels of 400-870 mg/cu m of
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zinc oxide and duration of exposure ranging from 1 to 3 hours, all of the 

unstated number of exposed workers were said to have had zinc fume fever at 

one time or another following such exposures. The metal fume contained, 
besides zinc, 12.4 mg/cu m of manganese and 1.6 mg/cu m of lead. It is 
difficult to say what role, if any, the manganese and lead fumes might haye 
played in causing the reported symptoms.

The human experimental reports of Sturgis, [5] Drinker, [33] and 
their colleagues in 1927 offered data on small numbers of subjects. 
Sturgis et al [5] produced metal fume fever in 2 male adult volunteers by 

exposing them at a measured average concentration of 600 mg/cu m of high 
purity, freshly generated zinc oxide fume, 1 for 10 1/2 minutes and the 
other for 12 minutes. Based on the different rates of respiration of the 

subjects, it was calculated that one must have retained about 24 mg and the 
other 37 mg of zinc. Typical febrile reaction occurred followed by marked 

leukocytosis which persisted for 12 hours after the body temperature 

returned to normal.
Drinker et al [33] investigated the exposure of a technician in a 

brass foundry at an average concentration of zinc oxide fume of 52 mg/cu m 
measured as zinc, for 5 hours. This exposure resulted in an attack of 
metal fume fever the following night. The next day the same individual was 
exposed at an average of 330 mg as Zn/cu m for about 3 hours. He 

experienced no ill effects on the 2nd day, supporting the theory of short­
term tolerance or relative immunity to zinc fume fever.

Drinker et al [29] also reported a rise in temperature in 2 

volunteers exposed to finely ground zinc oxide powder (0.15 fm particle 
size) dispersed in air as a stable cloud. The concentration so achieved
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was however not reported. This paper suggests that zinc oxide does not 

have to be generated from zinc metal fume to produce metal fume fever.

Drinker et al [6] conducted 27 experimental exposures on 7 male and 3 

female volunteers, varying the concentration of the freshly generated zinc 

oxide fume, durations of exposure, respiration rates, and minute volumes. 

Using rise in body temperature of the subjects as the critical response, 
they constructed a dose-response slope. They proposed a threshold limit of 

15 mg/cu m ZnO for an 8-hour exposure.
There are few animal studies reported which contribute to the 

correlation of exposure and effect in quantitative terms. Turner and 
Thompson [45] in 1926 reported exposures of guinea pigs for 1 hour to zinc 
oxide concentrations ranging from 1,000 to 2,600 mg/cu m. The animals 
exhibited "air hunger" and labored breathing. Their body temperatures were 
depressed below normal for the first 3-4 hours after exposure, but the 
animals then became febrile, reaching a peak after 16 hours.

Drinker and Drinker [48] in 1928 conducted experiments in which cats, 

rats, and rabbits were exposed from 15 minutes to 3 1/4 hours at levels of 

zinc oxide fume ranging from 110 to 600 mg/cu m. These animals showed 
prolonged depression of body temperature, but no subsequent rise above 
normal. The degree and duration of the temperature depression depended on 

the species of the animal and on the severity and duration of exposure.
Several investigators [35-38] have attributed gastrointestinal 

effects to zinc oxide at unknown levels of exposure. However these reports 
have not been substantiated by later studies. [34,41,57] In particular, a 
study by Natvig [57] in 1937 of 100 workers with a history of repeated 
attacks of metal fume fever found no evidence of gastrointestinal diseases.
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IV. ENVIRONMENTAL DATA

Environmental Concentrations
Pegues [58] conducted a series of samplings to demonstrate 

ventilation on welding operations. The tests were performed in large 
buildings described as having excellent ventilation "which was probably 
much better than in most welding shops." To ascertain the influence of 

ventilation, some tests were conducted in an enclosure, 6 feet by 10 feet, 
made of a tarpaulin 6 feet wide, and open at the top. In this enclosure 
both electric arc and oxyacetylene welding were performed on steel with 
either zinc silicate or galvanized coatings. Samples were collected at 
various distances from the welding operation, generally 2-3 feet away. 
During electric welding on zinc silicate coated steel, 5 samples had 
amounts of zinc equivalent to zinc oxide concentrations ranging from 64.0 

to 199.0 mg/cu m, with an average of 120.0 mg/cu m. Seven samples of 
oxyacetylene welding on the same steel showed zinc oxide concentrations 
between 17.0 and 46.0 mg/cu m, and an average of 27.0 mg/cu m. Four 

samples collected during the welding of galvanized steel with the electric 
arc showed zinc oxide concentrations between 31.0 and 185.0 mg/cu m, with 

an average of 109.0 mg/cu m, while oxyacetylene welding on galvanized steel 
produced a range of 30.0-107.0 mg/cu m in 5 samples, with an average of 
64.0 mg/cu m. However, without the enclosure, 4 breathing zone samples 
employing both materials and both types of welding showed concentrations 
between 7.0 and 20.0 mg/cu m. Nevertheless, 8 room air samples 3 feet and 
20 feet downwind from the welder produced concentrations of zinc oxide 
ranging from 5.0 to 31.0 mg/cu m, and 3 outdoor samples were reported to



have between 2.0 and 13.0 mg/cu m. Results of individual samples are shown 
in Tables X-3, X-4, X-5, and X-6.

Studies by Boekholt [59] demonstrated the effect of exposures from 
the use of local exhaust ventilation in enclosed spaces. Air samples 
collected during ship construction in Holland showed comparatively low 

concentrations of zinc oxide. In these investigations, welding was being 
done on steel plates coated with a zinc dust paint 20 jtnn thick in tanks 
having a depth of about 16 meters, with ventilation accomplished by 
flexible exhaust tubes placed close to the cloud of welding fume. Samples 
in the welders' breathing zone showed concentrations of 10 and 11 mg/cu m. 
Results in welding bays were also reported to show concentrations in the 
breathing zone of 5-13 mg/cu m. Results of individual samples are shown in 
Tables X-7 and X-8. The effectiveness of local exhaust ventilation is 
dependent on how close to the welding operation the exhaust tube opening 
can be placed, as well as on the volume and velocity of the air exhausted.

Stalker [60] studied lead and zinc fume hazards in 4 brass foundries, 
but presented little data on zinc concentrations, stating only that levels 
in excess of 15 mg/cu m were found in just 1 of the foundries. In that 

instance, however, he found an average of 182 mg/cu m for melting 
operations.

Elkins, [61] summarizing findings of investigations in Massachusetts 
covering more than 18 years starting in 1937, gave data listed in Table IV- 
I for zinc concentrations associated with selected operations. The years 

when the measurements were taken were not stated, however, the limit used 
in Massachusetts during the entire period was 15 mg/cu m.
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TABLE IV-1

ZINC CONCENTRATIONS IN SELECTED OPERATIONS

Operation No. of 
Samples

No. of Hazardous 
Concentrations

Galvanizing 8 0
Metal melting 12 4
Metal pouring 66 29
Welding 7 1

Steel and Sanderson, [62] investigating toxic fumes produced from 
various types of coated welding electrodes, found zinc oxide concentrations 
produced by burning such electrodes to range from 1.07 to 2.76 mg/cu m. 
While such concentrations were not considered high, if such coated welding 
electrodes were used, these concentrations would be added to the existing 

zinc oxide concentration released when welding any zinc coated metals.

Environmental Sampling and Analytical Methods
Common techniques for collecting particulate matter have been used 

successfully for sampling fumes and dust containing zinc. While the 

electrostatic precipitator is quite efficient, [63] filtration is 

recommended here, both because of its greater simplicity and because it 
lends itself to breathing zone sampling. Likewise, membrane filters are 

preferable to paper filters for personal monitoring by the procedure given 
in Appendix I. [64] A mixed cellulose ester membrane filter (or 
equivalent) with a pore size of 0.8 /¿m provides a highly retentive matrix 

for particulates and is recommended as an efficient collector of particles
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encountered in freshly formed zinc oxide fume. The cellulose ester 

membrane filter is attached to the battery operated personal sampling pump 

worn by the worker, permitting sampling without interference to the worker.
Chemical methods for the analysis of zinc content of samples have 

been thoroughly studied and extensively used for many years, and though 
relatively slow, they are satisfactory. [2,49,61,65-83] The methods most 

generally used employ dithizone separations. Margerum and Santacana [66] 
tested 8 methods, [67,70-73,78,79,84] employing radiozinc to aid in 
determining efficiencies, and recommended a dithizone method using bis(2- 
hydroxyethyl)dithiocarbamate (also called diethanol dithiocarbamate) as a 
complexing agent, as proposed by Serfass and Levine. [84] Very 

satisfactory results were obtained even in the presence of substantial 
amounts of 10 other metals as impurities— Cd, Co, Cu, Hg, Ni, Fe, Pb, Mn, 
Cr, and Sn.

Instrumental methods have also been used for the determination of 
zinc. These have included X-ray spectroscopy, [85] polarography, [86] and 

atomic absorption. [86,87] Because of speed and accuracy the atomic 
absorption method is replacing the dithizone method. [87] Appendix II 
presents details for a recommended atomic absorption method. This is based 
on Method No. 173 of the Physical and Chemical Analysis Branch of NIOSH. 
[88]

Control of Exposure
Since the principal hazard of zinc oxide is its fume, control efforts 

are directed primarily against the operation or processes in which zinc is 

subjected to elevated temperatures. Included in these process'-
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galvanizing, brass foundry operations, and welding. In each of these, 

effective control usually depends upon suitably designed and properly 

utilized local exhaust ventilation. [89,90] In welding and similar 
operations, the nature of the work may require the employee to change the 

location of his work frequently. Under such circumstances the exhaust 
system must accompany him. This may require the use of flexible exhaust 
ducts or other arrangements which enable the hood or the duct opening to be 

placed at the most effective location, preferably within a few inches of 
the flame or arc.

In foundry operations, careful design and location of exhaust hoods 
are required to control fumes from furnaces without interfering with 
operations. Unless centralized pouring is used, there is likewise a need 
for a flexible exhaust system which can accompany the pouring.

Since galvanizing is usually performed at a fixed location, the 
operations lend themselves to standard exhaust ventilation principles and 
practices. [89,90]

In some instances, general ventilation may prove sufficient to keep 
fume concentrations within the limits specified in the standard. Reliance 
should not be placed upon the natural ventilation, however, unless tests 

under conditions of minimal ventilation have conclusively demonstrated that 
the standards are met.

Where exhaust ventilation is required, the design principles pre­
sented in the 1974 edition of Industrial Ventilation - A Manual of 
Recommended Practice [89] or subsequent editions and in Fundamentals 
Governing the Design and Operation of Local Exhaust Systems, Z9.2-1971 
(ANSI), [90] should be used.
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Where dust problems may arise from production, processing, packaging, 

or other handling of zinc oxide, conventional ventilation, enclosure, and 
housekeeping procedures should usually suffice for adequate control.
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V. DEVELOPMENT OF STANDARD

Basis for Previous Standards
Cook, [91] in his comprehensive listing of Maximum Allowable Concen­

trations of Industrial Atmospheric Contaminants published in 1945, cited 15 
mg Zn/cu m as the Maximum Allowable Concentration (MAC) for zinc oxide then 
used by California, Massachusetts, New York, Utah, and the United States 
Public Health Service. As the basis for this MAC, Cook cited Drinker et al
[6] as having found that 14 mg/cu m of zinc oxide, measured as zinc, 

produced no reaction on the average subject after an exposure of 8 hours. 

Drinker et al [6] did not specifically define "average," but apparently 
referred to a healthy adult of either sex, "breathing at an average rate of 
9 liters a minute." They recommended a concentration of 15 mg/cu m as the 
threshold limit.

The paper by Drinker et al, [6] cited by Cook, [91] did not state 

clearly how the 15 mg/cu m was derived. It seems that it was not based on 
the dose-response slope calculated by Drinker. [6] Drinker referred to the 
work by Batchelor et al [34] but examination of the Batchelor paper does 
not reveal any specific statement regarding absence of effects at concen­
trations of zinc oxide below 14 or 15 mg/cu m. Sampling in industrial 
environments as described by Batchelor et al [34] led to a generalization 

by Drinker et al [6] that metal fume fever was not observed at levels below 
14 mg/cu m. This was apparently the basis for the 15 mg/cu m standard.

In 1946, the American Conference of Governmental Industrial 
Hygienists (ACGIH) published their first list of MAC's in which they 

endorsed the value of 15 mg/cu m for "zinc oxide fume." [92] The ACGIH MAC
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recommendation for zinc oxide fume, though the terminology eventually 
changed to Threshold Limit Value (TLV), remained at 15 mg/cu m until 1962 

when it was revised downward to 5 mg/cu m. This figure has remained 
unchanged since. [93] The basis for this reduction to 5 mg ZnO/cu m, 
according to the ACGIH Documentation of the Threshold Limit Values, [94] 
was the industrial observation that zinc chills (metal fume fever) occurred 
in nonferrous foundries where concentrations of zinc fume rarely exceeded 

15 mg/cu m. In addition, according to DE Hickish (in a written 

communication in 1963 to the TLV committee), metal fume fever was observed 
in an oxyacetylene welder who had been working on galvanized steel where 
very limited air sampling had subsequently indicated concentrations of 3.0- 
4.2 mg/cu m of zinc oxide. A question remained, however, as to whether the 

measurements were representative of the exposure of the welder.
The present federal standard for zinc oxide fume is an 8-hour time- 

weighted average of 5 mg ZnO/cu m (29 CFR 1910.1000). This standard of 5 
mg ZnO/cu m is based on the ACGIH TLV originally established in 1962. [93]

Basis for Recommended Environmental Standard

Industrial exposure to zinc oxide fume by inhalation has been shown 
to cause metal fume fever. [8,9,12,14,46] Reports in earlier papers of 
prolonged or intermittent exposure to zinc oxide fume causing gastro­

intestinal disturbances and other, chronic effects [35-37] have largely 

been discounted. [34,41,57] The reported medical data were insufficient 
and environmental data were either incomplete or of doubtful validity.

A report of skin lesions from frequent and prolonged coverage of the 
skin with zinc oxide powder [44] concluded that the material was an
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irritant but nontoxic. The lesions were found to be caused by bacterial 
infection and daily washing and improved personal cleanliness were 

sufficient to eliminate the disorder.
Drinker et al [6,29] published data which suggested that metal fume 

fever may also have been caused by well dispersed clouds of zinc oxide 
powder. Mogilevskaya [31] described clinical changes in the lungs of 13 
of 19 workers engaged for 2-3 years in the manufacture of zinc powder, as 

well as similar changes in the lungs of experimental rats exposed to zinc 
oxide powder. The changes included inflammation of the upper respiratory 
tract (nasopharyngitis and laryngitis) in the workers and peribronchial 
pneumonia, sclerosis, and abnormal bronchial tissue in the rats. The 
author [31] concluded that zinc oxide powder and zinc powder caused 
changes in the upper respiratory tract and in the bronchi and peribronchial 

tissues. Dzukaev and Kochetkova [32] observed fibrous changes in the lungs 
of workers in a zinc oxide shop and demonstrated clinical changes in the 
lungs of rabbits. The data were difficult to interpret since the rabbits 

were also exposed to lead.
The lack of environmental data on zinc oxide fume could be due to 

the lack of interest in the metal fume fever syndrome because of its 
transitory nature. Experienced workers cope with the problem and usually 

do not bother to report it. [34] Most of the animal studies have been 
directed toward the elucidation of the mechanism or pathogenesis of metal 
fume fever. [45,50,51]

In 1944, Hammond [46] reported the incidence of metal fume fever in 
stone crusher repairmen who, with oxyacetylene torches, cut out the worn 

linings of steel crushers in which zinc and zinc alloys were used as
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binders and fillers. These workers were exposed for periods of 1-3 hours 

to zinc oxide fume (as zinc) at 320-545 mg Zn/cu m. Eventually all these 
men experienced metal fume fever. There were concomitant exposures to 

approximately 12.4 mg/cu m of manganese fume and to 1.6 mg/cu m of lead 
fume. In contrast, men employed in pouring molten zinc into the crushers 
for unspecified periods of time were exposed at concentrations of zinc 

oxide fume of 8-12 mg Zn/cu m, and were never recorded as suffering metal 

fume fever following such work.
Having produced classical metal fume fever in volunteer subjects 

after 10 1/2-12 minutes' exposure at 600 mg/cu m of high purity, freshly 
generated zinc oxide fume, [5] and having observed metal fume fever in a 
colleague who had been exposed at an average of 52 mg/cu m for about 5 

hours, Drinker et al [6] conducted an elaborate series of experiments to 
determine the threshold for zinc oxide fume-induced metal fume fever. 
Twenty-seven experimental exposures of 10 volunteers, 7 males and 3 
females, were conducted at various concentrations, durations of exposure, 
respiration rates, and minute volumes. A dose-response slope was 

constructed using a rise in body temperature as the endpoint. A threshold 

value of 15 mg/cu m was selected by the authors who stated "We use a 

concentration of 15 mg per cubic meter as the threshold limit, because we 
have found that men exposed for eight hours to concentrations of that order 

do not ordinarily acquire fever." The earlier study by Batchelor et al 
[34] was used in support of this statement. However, the available data 
fail to support a threshold limit of 15 mg/cu m. Batchelor et al reported 
that a concentration of 57-70 mg/cu m of very finely divided zinc oxide 
powder inhaled slowly and deeply for 15 minutes or more was close to the
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threshold for metal fume fever. [34] The recommendation of Drinker and his 

colleagues [6] of 15 mg/cu m as a threshold limit value was widely accepted 

until 1962. [93]
The basis for including zinc oxide dust comes from animal [31,32,45] 

and human [45,95] experimental data which indicated that symptoms of metal 
fume fever resulted from exposure to zinc oxide dust. Batchelor et al [34] 

found that an individual unaccustomed to zinc, breathing zinc oxide dust 
slowly and deeply at concentrations of approximately 57-70 mg/cu m for 15 
minutes or more, developed a low grade metal fume fever reaction. 
Respiratory effects in humans and animals from zinc oxide powder consisted 

of pneumonia, sclerosis of bronchial tissue, and atrophic mucosal changes 
of the upper respiratory tract, thus suggesting chronic toxicity from zinc 
oxide powder. [31,32] However, the reported findings are clouded by a lack 

of quantitative data and the possibility of simultaneous human occupational 
exposures to substances other than zinc oxide. Turner and Thompson [45] 
reported histories of "oxide chills" in 7 out of 9 men employed in a zinc 

oxide packing room. The symptoms described by the workers consisted of 
irritation and dryness of the nose and throat and frequent headaches. The 
incidence of zinc oxide-induced metal fume fever seems strongly dependent 
on particle size with thresholds having been described for zinc oxide 
powder in the vicinity of 60 mg/cu m, and for oxidized zinc fumes 
encountered in welding operations on the order of 15 mg/cu m. Suggestions 
of cases of metal fume fever in the range of 5 mg/cu m are unsupported by 
firm data.

Although the effects of zinc fume fever are transitory, the 
possibility of chronic respiratory effects resulting from zinc oxide
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inhalation, whether as a fume or in larger particulate form, cannot be 
dismissed. It is appropriate to retain the current federal standard of 5 
mg/cu m, as a time-weighted average, and to recommend a ceiling of 15 mg/cu 

m, as determined by a sampling time of 15 minutes, to prevent the incidence 
of metal fume fever associated with zinc oxide inhalation and the possible 

development of pathological tissue changes in the lungs.
The sampling and analytical methods presented in Appendices I and II 

are based on Method Number 173 of the NIOSH Manual of Analytical Methods. 
The analytical method as developed is not specific for zinc oxide but 

measures total zinc. It is recognized that analysis for total zinc is not 
the most desirable approach and that additional research is needed to 
develop a method which is specific for zinc oxide. NIOSH is currently 
developing a sampling and analytical method to distinguish zinc oxide from 
total zinc.

From the work of Drinker et al, [6,8,29] the respirable fraction of 
suspended zinc oxide particles, 1 p  or less in size, seems to be 
responsible for metal fume fever. However there is not enough 

justification at this time to warrant a requirement for size-selective 
sampling.

It is recognized that many workers are exposed to small amounts of 
zinc oxide or are working in situations where, regardless of the amount 

generated, there is only negligible contact with the substance. Under 
these conditions, it should not be necessary to comply with many of the 
provisions of this recommended standard, which has been prepared primarily 
to protect worker health under more hazardous circumstances. Concern for 
worker health requires that protective measures be instituted below the
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enforceable limit to ensure that exposures stay below that limit. For 

these reasons, "exposure to zinc oxide" has been defined as exposure above 

half the TWA environmental limit, thereby delineating those working 

situations which do not require the expenditure of health resources for 
environmental and medical monitoring and associated recordkeeping. Half 
the environmental limit has been chosen on the basis of professional 

judgment rather than on quantitative data that delineate nonhazardous areas 
from areas in which a hazard may exist.
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VII. APPENDIX I

METHOD FOR SAMPLING ZINC OXIDE IN AIR

The sampling and analytical methods presented in Appendices I and II 
are based on those described in Method No. 173 of the Physical and Chemical 
Analysis Branch of NIOSH. [88]

Atmospheric Sampling
Breathing zone samples representative of the individual worker's 

exposure are collected. A description of sampling location and conditions, 
equipment used, time and rate of sampling, and any other pertinent 
information are recorded at the time of sample collection. Enough samples 

must be collected to permit calculation of a time-weighted average (TWA) 
exposure for every operation or location in which there is exposure to zinc 
oxide.

(a) Equipment
The sampling train consists of a membrane filter and a vacuum pump.

(1) Membrane filter: Samples of zinc oxide are collected in 
the breathing zone of the worker, using a sampler with a cellulose ester 
membrane filter. The filter is a 0.8 jum pore size mixed cellulose ester 
membrane mounted in a closed-face sampling cassette which can be attached 
to the worker near his breathing zone.

(2) Pump: A battery-operated pump, complete with clip for 
attachment to the worker's belt, capable of operation at 2 liters/min or 
less.
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(b) Calibration
Since the accuracy of an analysis can be no greater than the accuracy 

of the volume of air which is measured, the accurate calibration of a 
sampling pump is essential to the correct interpretation of the volume 

indicated. The frequency of calibration is dependent on the use, care, and 

handling to which the pump is subjected. Pumps should also be recalibrated 

if they have been misused or if they have just been repaired or received 
from a manufacturer. If the pump receives hard usage, more frequent 

calibration may be necessary. Regardless of use, maintenance and 
calibration should be performed on a regular schedule and records of these 
kept.

Ordinarily, pumps should be calibrated in the laboratory both before 
they are used in the field and after they have been used to collect a large 
number of field samples. The accuracy of calibration is dependent on the 
type of instrument used as a reference. The choice of calibration 
instrument will depend largely upon where the calibration is to be 
performed. For laboratory testing, primary standards such as a spirometer 

or soapbubble meter are recommended, although other standard calibrating 
instruments such as a wet test meter or dry gas meter can be used. The 
actual setups will be similar for all instruments.

Instructions for calibration with the soapbubble meter follow. If 
another calibration device is selected, equivalent procedures should be 
used. The calibration setup for personal sampling pumps with a membrane 
filter is shown in Figure X-l. Since the flowrate given by a pump is 

dependent on the pressure drop of the sampling device, in this case a 
membrane filter, the pump must be calibrated while operating with a
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representative filter in line.

(1) The voltage of the pump battery is checked with a 
voltmeter to assure adequate voltage for. calibration. The battery is 
charged if necessary.

(2) The sampling train is assembled as shown in Figure X-l.
(3) The pump is turned on and the inside of the soapbubble 

meter is moistened by immersing the buret in the soap solution and drawing 
bubbles up the inside until they are able to travel the entire buret length 

without bursting.
(4) The pump rotameter is adjusted to provide the desired

flowrate.

(5) The water manometer is checked to ensure that the 
pressure drop across the sampling train does not exceed 13 inches of water 

at 1 liter/min or 2.5 inches of water at 200 ml/min.
(6) A soapbubble is started up the buret and the time it 

takes the I ubble to move from one calibration mark to another is measured 
with a stopwatch.

(7) The procedure in (6) above is repeated at least twice, 
the results averaged, and the flowrate calculated by dividing the volume 
between the preselected marks by the time required for the soapbubble to 
traverse the distance.

(8) Corrections to the flowrate may be necessary if the 
pressure or temperature, when samples are collected, differs significantly 
from that when the calibration was performed. Flow rates may be calculated 

by using the following formula:
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q actual = q indicated • / P (calibrated) # T (actual)_____V P(actual) T(calibrated)

where = q = volumetric flowrate
T = absolute temperature (Kelvin or Rankine)

P = atmospheric pressure

(9) Use graph papers to record the air flow corrected to 25 

C and 760 torr as the ordinate and the rotameter readings as the abscissa.

(10) Data for the calibration include the volume measured, 
elapsed time or number of strokes, pressure drop, air temperature, 
atmospheric pressure, serial number of the pump, date, and name of the 
person performing the calibration.

(c) Sampling Procedure
(1) Sampling is performed using a closed-face membrane 

filter cassette.

(2) The sampler shall be operated at a flowrate of 1 
liter/min and samples taken for 15 minutes.

(3) The temperature and pressure of the atmosphere being 
sampled are measured and recorded.

(4) One membrane filter is treated in the same manner as 
the sample filters with the exception that no air is drawn through it. 
This filter serves as a blank.

(5) Immediately after sampling, personal filter samples 
should be sealed in individual plastic filter holders for shipment. The 
filters must not be loaded to the point where portions of the sample might 
be dislodged from the collecting filter during handling.
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VIII. APPENDIX II

METHOD FOR ANALYSIS OF ZINC OXIDE IN AIR

The procedure is based on Method No. 173 of the NIOSH Manual of 

Analytical Methods. [88]

Principle of the Method

The sample, collected on a cellulose membrane filter, is ashed using 

nitric acid to destroy the organic matrix. The zinc is solubilized in an 
acidic solution maintaining a pH of 1. Samples, blanks, and standards are 
aspirated into the atomic absorption flame. A hollow cathode lamp for zinc 

provides the characteristic line. The absorption of this line by the 
ground state atoms in the flame is proportional to the Zn in the aspirated 
sample.

Range and Sensitivity

The optimum working range is 0.025-2 ng Zn/ml. This value can be 
extended to higher concentrations by dilution of the sample. The 
sensitivity is 0.025 jug Zn/ml. This value will vary somewhat depending 
upon the instrument used.

Interferences
None have been reported.
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Precision and Accuracy
In general, this analytical method will provide a coefficient of 

variation of approximately 2% depending upon the instrument used. Data on 

accuracy of the method are not yet available.

Advantages and Disadvantages
The method is rapid because there is little sample preparation. It 

does not require a high degree of technical skill. It is not affected by 
the presence of other common metallic elements. However, since it measures 
total zinc, it is not capable of distinguishing various zinc compounds from 
each other.

Apparatus

Hollow cathode lamp for zinc.

Atomic absorption spectrophotometer, having a monochromator with a 

reciprocal linear dispersion of about 6.5 Angstroms/mm in the ultraviolet 
region, and equipped with a burner head for air-acetylene flame.

Oxidant: Air which has been filtered to remove water, oil, and other
foreign substances.

Fuel: Acetylene, commercially available for atomic absorption use.

Pressure-reducing valves: A 2-gauge, 2-stage pressure reducing valve
and appropriate hose connections are needed for each compressed gas tank
used.

64



Glassware, borosilicate:
125-ml Phillips beakers with watchglass covers 
15-ml graduated centrifuge tubes 
10-ml and 100-ml volumetric flasks 
125-ml polyethylene bottles 

Hotplates capable of reaching 400 C

Reagents
Doubly distilled or deionized water 

Redistilled concentrated nitric acid 
Distilled 1:1 hydrochloric acid
Aqueous stock standard containing 1000 /ig zinc/ml (commercially 

available).

Procedure
(a) Cleaning of Equipment

Before use, glassware should be washed with a laboratory glassware 
detergent, rinsed with tap water, then 10% nitric acid, and finally rinsed 
with distilled water.

(b) Analysis of Samples
Samples are transferred to clean 125-ml Phillips beakers and several 

milliliters of concentrated nitric acid are added to each. Each beaker is 
covered with a watchglass and heated on a hotplate (140 C) in a fume hood 

until the sample chars or until a slightly yellow solution remains. 
Several additions of nitric acid may be needed to completely ash and
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destroy the organic material.
Once the ashing is complete as indicated by a whitish residue in the 

beaker and following several minutes on the high temperature hotplate (400 
C), the residue is converted to the chloride form by 3 successive 
evaporations with 1:1 hydrochloric acid. The ash is then dissolved with 
1:1 hydrochloric acid and quantitatively transferred to a 15-ml graduated 
centrifuge tube and brought up to volume with deionized water. Aliquots of 

this can be diluted if necessary or the volume can be reduced by 
evaporation to get the zinc concentration within the working range of the 
method.

The sample is then aspirated into an oxidizing air-acetylene flame. 
The analytical wavelength is 2139 Angstroms. The other operating 

parameters are set according to the instrument instructions from the 
manufacturer. When very low zinc concentrations are found in the sample, 
scale expansion can be used to increase instrument response.

Calibration and Standards

From the 1000 jug zinc/ml stock standard solution, prepare working 

standards to cover the range between 0.025 and 2 ¿tg/ml. The standard 
solutions are made 0.3 N in hydrochloric acid and are stored in 
polyethylene bottles. The low concentration standards may deteriorate and 
should be made on the day to be used.

Aspirate the series of standards and record the percentage of 
absorption.

Prepare a calibration curve by plotting on linear graph paper the 
absorbance versus the concentration of each standard in jug/ml. It is
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advisable to run a set of standards both before and after a sample run to 

ensure that conditions have not changed.

Calculations

From the calibration curve, read the concentration in Mg/ml in the 
analysis sample.

Blank values, if any, are subtracted from each sample.

The concentration of zinc in the original sample in n g /m l equals the 
Mg/ml in the analysis sample times the dilution factor.

To obtain the concentration of zinc oxide in the original sample, 

multiply the concentration of zinc by 1.245.
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IX. APPENDIX III

MATERIAL SAFETY DATA SHEET

The following items of information which are applicable to a specific 
product or material shall be provided in the appropriate block of the 
Material Safety Data Sheet (MSDS).

The product designation is inserted in the block in the upper left 

corner of the first page to facilitate filing and retrieval. Print in 
upper case letters in as large a type size as possible. It should be 

printed to read upright with the sheet turned sideways. The product 
designation is that name or code designation which appears on the label, or 
by which the product is sold or known by employees. The relative numerical 
hazard ratings and key statements are those given in Chapter V, Part B, of 
the NIOSH publication, An Identification System for Occupationally 
Hazardous Materials. The company identification may be printed in the 
upper right corner if desired.

(a) Section I. Product Identification

The manufacturer's name, address, and regular and emergency telephone 
numbers (including area code), are inserted in the appropriate blocks of 
Section I. The company listed should be a source of detailed backup 

information on the hazards of the material(s) covered by the MSDS. The 
listing of suppliers or wholesale distributors is discouraged. The trade 
names should be the product designation or common name associated with the 

material. The synonyms are those commonly used for the product, especially 
formal chemical nomenclature. Every known chemical designation or
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competitor’s trade name need not be listed.

(b) Section II. Hazardous Ingredients

The "materials" listed in Section II shall be those substances which 
are part of the hazardous product covered by the MSDS and individually meet 
any of the criteria defining a hazardous material. Thus, one component of 

a multicomponent product might be listed because of its toxicity, another 

component because of its flammability, while a third component could be 
included both for its toxicity and its reactivity. Note that a MSDS for a 
single component product must have the name of the material repeated in 
this section to avoid giving the impression that there are no hazardous 
ingredients.

Chemical substances should be listed according to their complete name 
derived from a recognized system of nomenclature. Where possible, avoid 
using common names and general class names such as "aromatic amine," 
"safety solvent," or "aliphatic hydrocarbon" when the specific name is 
known.

The "%" may be the approximate percentage by weight or volume 

(indicate basis) which each hazardous ingredient of the mixture bears to 

the whole mixture. This may be indicated as a range or maximum amount, ie, 

"10-40% vol" or "10% max wt" to avoid disclosure of trade secrets.

Toxic hazard data shall be stated in terms of concentration, mode of 
exposure or test, and animal used, ie, "100 mg/kg LD50-oral-rat," "25 mg/kg 
LD50-skin-rabbit," "75 ppm LC man," or "permissible exposure from 29 CFR 
1910.1000," or if not available, from other sources of publications such as 
the American Conference of Governmental Industrial Hygienists or the 

American National Standards Institute, Inc. Flammable or reactive data
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could be flash point, shock sensitivity, or other brief data indicating 

nature of the hazard.
(c) Section III. Physical Data
The data in Section III should be for the total mixture and should 

Include the boiling point and melting point in degrees Fahrenheit (Celsius 

in parentheses); vapor pressure, in millimeters of mercury (mm Hg); vapor
density of gas or vapor (air = 1); solubility in water, in parts/hundred
parts of water by weight; specific gravity (water ■> 1); percent volatiles 

(Indicated if by weight or volume) at 70 degrees Fahrenheit (21.1 degrees 
Celsius); evaporation rate for liquids or sublimable solids, relative to 
butyl acetate; and appearance and odor. These data are useful for the 
control of toxic substances. Boiling point, vapor density, percent 
volatiles, vapor pressure, and evaporation are useful for designing proper 
ventilation equipment. This information is also useful for design and 

deployment of adequate fire and spill containment equipment. The 
appearance and odor may facilitate identification of substances stored in 

improperly marked containers, or when spilled.
(d) Section IV. Fire and Explosion Data
Section IV should contain complete fire and explosion data for the

product, including flash point and autoignition temperature in degrees 
Fahrenheit (Celsius in parentheses); flammable limits, in percent by volume 
in air; suitable extinguishing media or materials; special firefighting 

procedures; and unusual fire and explosion hazard information. If the 
product presents no fire hazard, insert "NO FIRE HAZARD" on the line 
labeled "Extinguishing Media."
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(e) Section V. Health Hazard Information

The "Health Hazard Data" should be a combined estimate of the hazard 

of the total product. This can be expressed as a TWA concentration, as a 
permissible exposure, or by some other Indication of an acceptable 

standard. Other data are acceptable, such as lowest LD50 if multiple 
components are involved.

Under "Routes of Exposure," comments in each category should reflect
the potential hazard from absorption by the route in question. Comments
should indicate the severity of the effect and the basis for the statement
if possible. The basis might be animal studies, analogy with similar 

products, or human experiences. Comments such as "yes" or "possible" are 
not helpful. Typical comments might be:

Skin Contact— single short contact, no adverse effects likely; 
prolonged or repeated contact, mild irritation and possibly some 
blistering.

Eye Contact— some pain and mild transient irritation; no comeal 
scarring.

"Emergency and First Aid Procedures" should be written in lay 
language and should primarily represent first aid treatment that could be 
provided by paramedical personnel or individuals trained in first aid.

Information in the "Notes to Physician" section should include any 
special medical information which would be of assistance to an attending 
physician including required or recommended preplacement and periodic 

medical examinations, diagnostic procedures, and medical management of 
overexposed workers.
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(f) Section VI. Reactivity Data
The comments in Section VI relate to safe storage and handling of 

hazardous, unstable substances. It is particularly important to highlight 
instability or incompatibility to common substances or circumstances such 
as water, direct sunlight, steel or copper piping, acids, alkalies, etc. 
"Hazardous Decomposition Products" shall include those products released 
under fire conditions. It must also include dangerous products produced by 

aging, such as peroxides in the case of some ethers. Where applicable, 
shelf life should also be indicated.

(g) Section VII. Spill or Leak Procedures
Detailed procedures for cleanup and disposal should be listed with 

emphasis on precautions to be taken to protect workers assigned to cleanup 

detail. Specific neutralizing chemicals or procedures should be described 

in detail. Disposal methods should be explicit Including proper labeling 
of containers holding residues and ultimate disposal methods such as 

"sanitary landfill," or "incineration." Warnings to comply with local, 
state, and federal anti-pollution ordinances are proper but not sufficient. 
Specific procedures shall be identified.

(h) Section VIII. Special Protection Information

Section VIII requires specific Information. Statements such as 
"yes," "no," or "if necessary" are not Informative. Ventilation 
requirements should be specific as to type and preferred methods. 
Respirators shall be specified as to type and NIOSH or US Bureau of Mines 
approval class, ie, "Supplied air," "Organic vapor canister," "Suitable for 
dusts not more toxic than lead," etc. Protective equipment must be 

specified as to type and materials of construction.
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(i) Section IX. Special Precautions
"Precautionary Statements" shall consist of the label statements 

selected for use on the container or placard. Additional information on

any aspect of safety or health not covered in other sections should be
inserted in Section IX. The lower block can contain references to 
published guides or in-house procedures for handling and storage. 
Department of Transportation markings and classifications and other 

freight, handling, or storage requirements and environmental controls can 
be noted.

(j) Signature and Filing

Finally, the name and address of the responsible person who completed 

the MSDS and the date of completion are entered. This will facilitate 

correction of errors and identify a source of additional information.
The MSDS shall be filed in a location readily accessible to workers 

potentially exposed to the hazardous material. The MSDS can be used as a 
training aid and basis for discussion during safety meetings and training 

of new employees. It should assist management by directing attention to 
the need for specific control engineering, work practices, and protective 
measures to ensure safe handling and use of the material. It will aid the 
safety and health staff in planning a safe and healthful work environment 
and suggesting appropriate emergency procedures and sources of help in the 
event of harmful exposure of employees.
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MATERIAL SAFETY DATA SHEET
1 PRODUCT IDENTIFICATION

M ANUFACTURER'S NAME REGULAR TELEPHONE NO. 
EMERGENCY TELEPHONE NO.

ADDRESS

TRADE NAME

SYNONYMS
II HAZARDOUS INGREDIENTS

M A TE R IA L OR COMPONENT % HAZARD DATA

III PHYSICAL DATA
BOILING POINT, 760 MM HG MELTING POINT

SPECIFIC G R A V ITY  (H20  = 1) VAPOR PRESSURE

VAPOFt DENSITY (A IR -1 ) SO LU B ILITY  IN H20 , % BY WT.

% VO LA TILES BY VOL. EVAPORATION RATE (BUTYL ACETATE» 1)

APPEARANCE AND ODOR
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IV FIRE AND EXPLOSION DATA
FLASH POINT 
(TEST METHOD)

AUTOIGNITION
TEMPERATURE

FLAMM ABLE LIMITS IN A IR , % BY VOL. LOWER UPPER

EXTINGUISHING
MEDIA

SPECIAL FIRE
FIGHTING
PROCEDURES

UNUSUAL FIRE 
AND EXPLOSION 
HAZARD

V HEALTH HAZARD INFORMATION
HEALTH HAZARD DATA

ROUTES OF EXPOSURE 

IN H ALATIO N

SKIN CONTACT

SKIN ABSORPTION

EYE CONTACT

INGESTION

EFFECTS OF OVEREXPOSURE 
ACUTE OVEREXPOSURE

CHRONIC OVEREXPOSURE

EMERGENCY AND FIRST A ID  PROCEDURES 

EYES:

SKIN:

IN H ALATIO N :

INGESTION.

NOTES TO PHYSICIAN
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VI REACTIVITY DATA

CONDITIONS CONTRIBUTING TO IN S TA B ILITY

INCO M PATIBILITY

HAZARDOUS DECOMPOSITION PRODUCTS

CONDITIONS CONTRIBUTING TO HAZARDOUS POLYMERIZATION

VII SPILL OR LEAK PROCEDURES
STEPS TO BE TAKE N  IF M A TE R IA L IS RELEASED OR SPILLED 

N EU TR ALIZ IN G  CHEMICALS

WASTE DISPOSAL METHOD

VIII SPECIAL PROTECTION INFORMATION
VE N TILA TIO N  REQUIREMENTS

SPECIFIC PERSONAL PROTECTIVE EQUIPMENT 

RESPIRATORY (SPECIFY IN DETAIL)

EYE

GLOVES

OTHER CLOTHING AND EQUIPMENT
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IX SPECIAL PRECAUTIONS
PRECAUTIONARY
STATEMENTS

OTHER HAN DLIN G  AND 
STORAGE REQUIREMENTS

PREPARED BY:

ADDRESS:

DATE:
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X. APPENDIX IV 

TABLES AND FIGURE

Formula 

Formula weight 

Specific gravity 

Melting point 

Solubility

Adapted from McMahon

TABLE X-l 

CHEMICAL AND PHYSICAL PROPERTIES

ZnO 

81.37 

5.606 

1975 C

0.00016 g/100 ml water 
at 29 C; soluble in 
mineral acids, dilute 
acetic acid and ammonium 

chloride

[1] and Weast [96]
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TABLE X-2

POTENTIAL OCCUPATIONAL EXPOSURES TO ZINC AND ITS COMPOUNDS

Alloy makers 
Arc welders, electric 

Brass foundry workers 
Braziers
Bronze foundry workers
Electric fuse makers
Electroplaters

Galvanizers
Gas welders

Junk metal refiners

Derived from Gafafer [7]

Metal cutters 
Metalizers 
Metal sprayers 
Paint manufacturers 
Printing plate makers 
Roofing makers 
Shipyard workers 

Zinc founders 
Zinc smelters 
Zinc workers
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TABLE X-3

SAMPLING IN AREAS OF POOR VENTILATION

Coating Type Weld Sampling Location
Concentration 
ZnO, mg/cu m

Zinc- Electric
silicate arc 2' directly above welding 159.9tt It 2 f above and 2 1/2' back 107.2tt tf 3' tt h 2 1 ,f 68.9ft ft 3' If h 2* 11 64.0It

Zinc-

ff

Oxy-

Welder's shoulder 199.44 
Mean 119.9

silicate acetylene 1' above and 11 back 45.9ft fl 3' tt " 2 1/2' " 22.8If tt 3' tf " 2 1/2' " 21.4tt tt 3' ft h 2 f n 18.0ft II 3' ft h 2 1 11 42.6If ff 3' tt h 2* 11 19.9ff

Galv.

ft

Electric

3' ft h 2 t 11 17.1 
Mean 26.81

Steel arc 2' above and 1' back 65.511 tf 2' tl welders' face 152.0II fl 6 ’ " floor and 5' in 
front of welder 31.5ft

Galv.

II

Oxy-

Welder's shoulder 185.0 
Mean 108.5

Steel acetylene 2' above and 2' back 106.6II If 3 ’ If " 2 1/2' " 33.0If ft 2 ’ II ti j i ti 64.0If tf 6' II «i 5 1 »t 30.0
II ff 3' II » j i ti 85.0 

Mean 63.72

From Pegues [58]
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TABLE X-3 (continued)

SAMPLING IN AREAS OF POOR VENTILATION

Concentration
Coating Type Weld Sampling Location ZnO, mg/cu m

Clean Electric
Steel arc 2* above and 1' back 14.9

(control sample)
II it 20' from enclosure (Room air- 0

control sample)
II Oxy- 201 from enclosure (Room air- 1.3

acetylene control sample)
From Pegues [58]
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TABLE X-4

SAMPLING IN AREAS OF "GOOD" VENTILATION*

Coating Type Weld Sampling Location
Concentration 
ZnO, mg/cu m

Zinc silicate Electric arc beading Welder's hood 9.84
Zinc silicate Electric arc welding Welder's hood 19.81
Galv. steel Electric arc welding Near nose 6.63
Galv. steel Oxyacetylene cutting Welder's hood 12.28

*As qualified by Pegues 
From Pegues [58]
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TABLE X-5

ROOM AIR SAMPLES 
ELECTRIC ARC WELDING ON ZINC-SILICÀTE COATING

Concentration 
Sampling Location ZnO, mg/cu m Average

3* downwind from welder 31 from floor 15.4 14.15
3’ downwind from welder 3' from floor 12.9
20' downwind from welder 3’ from floor 4.9 5.86
20’ downwind from welder 3' from floor 6.8
20’ downwind from welder 6’ from floor 30.5 22.3
20* downwind from welder 6' from floor 14.1

From Pegues [58]
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TABLE X-6

OUTDOOR SAMPLES (10-MPH WIND)

Coating Type Weld Sampling Location
Concentration 
ZnO, mg/cu m

Zinc silicate Electric Arc Inserted in hood 4.22

Galv. steel Electric Arc Inserted in hood 13.24
Galv. steel Oxyacetylene

cutting
3" from welder's nose 2.40

From Pegues [58]

84



TABLE X-7

SAMPLES TAKEN IN TANKS VENTILATED BY FLEXIBLE EXHAUST TUBES 
TERMINATING NEAR CLOUD OF WELDING FUME

Sampling Conditions
Concentration 
ZnO, mg/cu m

Wing tank. Two welders. Bottom of tank near
nose of welder 11

Blank determination in wing tank.* No welding 1

Ditto at height of 4m 3
Ditto at height of 9m 1
Ditto under deck head. Two welders. Near nose

of welder 10

Duplicate of last condition 11

*Volume of wing tank was 1450 cu m 
From Boekholt [59]

85



TABLE X-8

SAMPLES TAKEN FROM STEEL PLATES AND SECTION 
SHOPS WITH ZINC DUST PAINT 20 jum THICK

Sampling Conditions
Concentration 
ZnO, mg/cu m

Near welder's nose during manual welding 11

In cloud of welding fume 13

Near worker's nose during gas cutting
at various locations,

automatic 5-10

by hand 13

In workshop between units at man's height,
blue smoke visible 2-4

From Boekholt [59]
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FIGURE X - 1. CALIBRATION SETUP FOR PERSONAL SAMPLING PUMP WITH FILTER CASSETTE
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